Stable Splitting of Bivariate Splines Spaces by Bernstein-Bézier Methods

نویسندگان

  • Oleg Davydov
  • Abid Saeed
چکیده

We develop stable splitting of the minimal determining sets for the spaces of bivariate C splines on triangulations, including a modified Argyris space, Clough-Tocher, Powell-Sabin and quadrilateral macro-element spaces. This leads to the stable splitting of the corresponding bases as required in Böhmer’s method for solving fully nonlinear elliptic PDEs on polygonal domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of normalized B-splines for a family of smooth spline spaces over Powell-Sabin triangulations

We construct a suitable B-spline representation for a family of bivariate spline functions with smoothness r ≥ 1 and polynomial degree 3r − 1. They are defined on a triangulation with PowellSabin refinement. The basis functions have a local support, they are nonnegative and they form a partition of unity. The construction involves the determination of triangles that must contain a specific set ...

متن کامل

Continuity and Convergence in Rational Triangular Bézier Spline Based Isogeometric Analysis

This paper presents a method for isogeometric analysis using rational Triangular Bézier Splines (rTBS) where optimal convergence rates are achieved. In this method, both the geometry and the physical field are represented by bivariate splines in Bernstein Bézier form over the triangulation of a domain. From a given physical domain bounded by NURBS curves, a parametric domain and its triangulati...

متن کامل

Convexity preserving splines over triangulations

A general method is given for constructing sets of sufficient linear conditions that ensure convexity of a polynomial in Bernstein–Bézier form on a triangle. Using the linear conditions, computational methods based on macro-element spline spaces are developed to construct convexity preserving splines over triangulations that interpolate or approximate given scattered data.

متن کامل

Fast and stable evaluation of box-splines via the Bézier form

To repeatedly evaluate linear combinations of box-splines in a fast and stable way, in particular along knot planes, we convert to and tabulate the box-spline as piecewise polynomials in Bézier form. We show that the Bézier coefficients can be stored as integers and a rational scale factor and derive a hash table for efficiently accessing the Bézier pieces. The preprocessing, the resulting eval...

متن کامل

Tensor-product monotonicity preservation

The preservation of surface shape is important in geometric modelling and approximation theory. In geometric modelling one would like to manipulate the shape of the surface being modelled by the simpler task of manipulating the control points. In scattered data approximation one might wish to approximate bivariate data sampled from a function with a shape property by a spline function sharing t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010